+WS 4.3 STOICHIOMETRY part 1 Show all work using dimensional analysis!	
1. 4 Na + O₂ > 2 Na₂O a) How many moles of sodium (Na) would be needed to react with 3.82 moles of oxygen (O ₂)?	
b) How many moles of Na ₂ O can be produced from 13.5 moles Na?	Ans
c) How many moles of O_2 are needed to produce 34.7 g of Na_2O ?	Ans
2. $C_2H_4 + 3O_2> 2CO_2 + 2H_2O$ a) When 0.624 moles of O ₂ are reacted, how many moles of carbon dioxide are p	Ans
b) How many grams of C_2H_4 are needed to produce 3.7 moles of water?	Ans
c) how many grams of O_2 are needed to react with 2.56 g of C_2H_4 ?	Ans
3. $N_2 + 3F_2> 2NF_3$ a) When 62.0 g of fluorine are reacted, how many moles of NF ₃ will be formed?	Ans
b) How many molecules of N_2 are needed to produce 2.85 g of NF_3 ?	Ans
c) 3.54 g of nitrogen will react with how many grams of fluorine?	Ans
4. 4 NH₃ + 7 O₂> 4 NO₂ + 6 H₂O a) What mass of NO ₂ can be produced from 3.56 x 10^{22} molecules of oxygen?	Ans
b) 13.8 g of NH_3 would be able to produce how many moles of H_2O ?	Ans
c) How many grams of O_2 are needed to produce 15.5 g of H_2O ?	Ans
Ans (IRO+1) : 0.280 0.416 1.09 1.22 1.55 6.75 8.78 14.4 15.3 22.4 32.1 52 1.21E22 Units (IRO+1) : mol mol mol mol mol g g g g g molecules	Ans