Notes
1) Reaction question
(a) CaCO3 ---> CaO + CO2
(b) Ni + Cu2+ ---> Ni2+ + Cu
hydrated ions acceptable with correct charge
1 point for Ni(OH)2 as product
(c) HPO42¯ + H+ ---> H2P04¯
incorrect charge on H2P04¯ when only one product occurs, 1 point only
1 product point for transfer if H+ from an ionic reactant to product when a phosphate species is incorrectly but consistently written.
(d) Cl2 + Br- ---> Cl¯ + Br2
no credit for monatomic Cl as reactant or Br as product
(e) NH3 + HC2H3O2 ---> C2H3O2¯ + NH4+
1 product point for NH4C2H3O2
1 point for NH3 + H+ ---> NH4
(f) (NH4)2CO3 + Ba2+ + OH¯ ---> NH3 + BaCO3 + H2O
1 product point for either NH3 or BaCO3
2 product points for all three species correct
(g) N2O3 + H2O ---> HNO2
1 product point for H+ + NO2¯
(h) MnO4¯ + C2O42¯ ---> MnO2 + CO2
no penalty for OH¯ or H2O in equation
no point earned for Mn2+ as product
a) two points total ; one point for correct substitutions; one point for computation
[H+] = [OCl¯] = square root (0.14 x 3.2 x 10¯8) = 6.7 x 10¯5 M
since Ka
= ( [H+][OCl¯] ) / [HOCl]
= [H+]2 / cHOCl
(b) two points total: one point each
OCl¯ + H2O <===> HOCl + OH¯ (or NaOCl + H2O ---> Na+ + HOCl + OH¯)
Kb = Kw / Ka = 1 x 10¯14 ÷ 3.2 x 10¯8 = 3.1 x 10¯7
(c) two points total; one for concentrations and one for pH calc.
Concentrations before reaction:
[HOCl] = [(0.0400) (0.14)] / 0.050 = 0.11 M
[OH¯] = [(0.0100) (0.56)] / 0.050 = 0.11 M
Thus reaction is essentially complete and exactly equals a solution of NaOCl and [OCl¯] = 0.11 M (or reaction is at equivalence point).
Then
[OH¯] = [HOCl]
Kb = [OH¯]2 / 0.11 = 3.1 x 10¯7
[OH¯] = square root [(0.11) (3.1 x 10¯7)] = 1.8 x 10¯4
pOH = 3.73
pH = 14 - 3.73 = 10.27
(d) two points; one for half-neutralized; one for mmol calcs.
pH = 7.49 therefore [H+] = 3.2 x 10¯8
pH = pKa , or [H+] = Ka.
So [OCl¯] / [HOCl] = 1 , or solution must be half neutralized.
initial mmol HOCl = 50.0 x 0.20 = 10.0 mmol
mmol NaOH required = 10.0 ÷ 2 = 5.0 mmol
(e) one point
From equation, 1 mol H+ produced for each 1 mole of HOCl produced, thus [H+] = [HOCl] = 0.065 therefore pH = 1.19
(a) two points; one for line of answer
- 232.7 J/K = S° (C2H6) - (261.4 + 200.9) J./K
S° (C2H6) = 229.6 J/K
units ignored; 1 point earned for 98.9 J/K; 1 point lost if stoichiometry is not implied in process
(b) three points total; one point each portion; any value for T (e.g., 273 K or 298 K) is allowable:
[delta]H° = (- 84.7 kJ) - (226.7 kJ) = -311.4kJ
= - 311.4kJ - (298 K) (- 0.2327kJ/K)
= - 311.4 kJ + 69.3 kJ
= - 242.1 kJ
Negative [delta]G° therefore reaction is spontaneous, or Keq > 1 therefore reaction is spontaneous, or products are favored at equilibrium.
(c) two points
ln K = 242.1 ÷ [(8.31 x 10¯3) (298)] = 97.7
K = 3 x 1042 (1,2,or 3 significant figures acceptable)
(d) two points; first point earned for correct substitution and correct number of bonds, second point earned for setting equal to [delta]Hrxn and correct calculation of answer; no points earned for "extrapolation" techniques to find carbon-carbon triple bond energy; E* is the energy of the carbon-carbon triple bond.
- 311.4 kJ = [(2) (436) + E* + (2) (414)] - [(347) + (6) (414)]
E* = 820 kJ
(a) one point
V1M1 = V2M2
(1.00L) (5.20 mol/L) = (x) (18.4 mol/L)
x = 5.2 mol / (18.4 mol/L) = 0.283 L (or 283 mL)
(b) two points
mass 1 liter of concentrated H2SO4 = 1 L x (1.84 g/mL) x (1,000 ml/L) = 1,840 g H2SO4
18.4 mol H2SO4 x 98.1 g/mol = 1,805 g H2SO4
mass percent H2SO4 = (1,805 g / 1,840 g) x 100 = 98.1%
(c) three points
Stoichiometric ratio of NaHCO3 to H2SO4 = 2:1
10.5 g NaHCO3 x (1 mol NaHCO3 / 84.0 g NaHCO3) = 0.125 mol NaHCO3
Since 1 mol H2SO4 reacts with 2 mol NaHCO3, 0.125 mol NaHCO3 reacts with 0.0625 mol H2SO4
0.0625 mol H2SO4 = V x M = (V) (5.20 M)
V = 0.0625 mol / (5.20 mol/L) = 0.0120 L (or 12.0 mL)
(d) three points
molality = moles solute / 1,000 g solvent = moles solute / 1 kg solvent
mass of 1 L of 5.20 M H2SO4 = 1 L x (1,000 mL / 1 L) x (1.38 g 1 mL) = 1,380 g
mass of H2SO4 in 1 L = (5.20 mol/L) (98.1 g.mol) = 510 g
mass of H2O in 1 L = 1,380 - 510 = 870 g
molality = (5.20 mol H2SO4 / 870 g) x (1,000 g / 1 kg) = 5.98 m
Note: no credit earned for 5.20 mol / 1.38 kg = 5.77 m
(a) two points
CO2
because all contain same number of molecules (moles), and CO2 molecules are the heaviest
Note: total of 1 point earned if CO2 not chosen but same number of molecules (moles) is specified
(b) two points
All are equal
because same temperature, therefore same average kinetic energy
Note: just restatement of "same conditions, etc." does not earn second point
(c) two points
CO2
either one:
it has the most electrons, hence is the most polarizable
it has the strongest intermolecular (London) forces
Note: also allowable are "polar bonds", "inelastic collisions"; claiming larger size or larger molecular volume does not earn second point
(d) two points
He
Any one:
greatest movement through the balloom wall
smallest size
greatest molecular speed
most rapid effusion (Graham's law)
6) for explanation point in 9 (a), (c), and (d), credit is earned at step indicted in boldface type.
(a) two points
Calculated Mm(HA) too low
M(NaOH) => V(NaOH) => n(NaOH) => n(HA) => Mm(HA)
(M = n ÷ V) and (Mm = m÷ n)
(b) two points
Calculated Mm(HA) not affected
Any one of the following reasons. Water:
does not change n(HA)
changes only M(HA) -- sense of dilution
is not a reactant
(c) two points
Calculated Mm(HA) too high
equivalence point => n(NaOH) => n(HA) => Mm(HA)
(expected pH higher)
Note: "no effect if NaOH standardized with same indicator" earns 2 points; no credit earned if pH=7 or neutral
(d) two points
Calculated Mm(HA) too low
V(NaOH) => n(NaOH) => n(HA) => Mm(HA)
Note: point earned for V(NaOH) only if:
(i) no explanation point is earned in (a)
(ii) explanation in (a) also includes V(NaOH)
(a) two points
The sign of the cell potential will be positive
because (any one is sufficient):
K is greater than 1
the reaction is spontaneous (occurs)
E° for Sr2+ is more positive
Standard reduction potential for Sr more negative
E° = + 0.52 V
Note: only 1 point earned for just E° positive because Keq positive.
(b) one point
The oxidizing agent is Mg2+
(c) two point
The cell potential would increase
Since all ions are at 1 M, Q for the system is 1 and E° = (RT/nF) ln K
so as T increases, so should E°
Note: no credit lost if student recognizes Keq dependence on T. For temperature change in this problem, decrease in ln K term is small relative to the term RT/nF
OR
No change, because in the Nernst equation Ecell = E° - (RT/nF) ln Q
ln Q = 0, and Ecell = E°
Note: this second approach earns 1 point only
(d) two points
Ecell will increase
In the equation Ecell = E° - (0.0592 / n) log Q
Q = 0.1 therefore log Q is negative therefore term after E° is positive therefore Ecell increases
OR
with the concentration of Mg2+ larger than that of Sr2+, Le Chatelier's principle predicts the reaction will have a larger driving force to the right and a more positive Ecell
(e) one point
At equilibrium, Ecell = 0
Note: "balanced", "neutral", or "no net reaction" not accepted
(a) one point
2 NO + 2 H2 ---> N2 + 2 H2O
(b) two points
N2O2 and N2O are intermediates
because they appear in the mechanism but not in the overall products (or reactants)
(c) three points; one for each half of conclusion (1) answer, third for conclusion (2) answer
Student indicates conclusion (1) is correct,
because the sum of the exponents in rate law is 2 + 1 = 3
Student indicates conclusion (2) is incorrect,
because no step involves two NO molecules and a H2 molecule
(d) two points; T goes up therefore k goes up:
because increasing number of collisions between reactants
are occuring with sufficient energy to form an activated complex
OR
T goes up therefore rate goes up
because no change in concentration of reactants, therefore k must increase
OR
from Arrhenius equation (not required in AP Chemistry curriculum, but noted in some student responses):
as T goes up, k goes up
OR
graph as below with proper explanation
(a) two points
Hydrogen bonding (or dipole-dipole attraction) in HF is greater than it is in HCl
Note: only one point earned if simply stated that HF has greater intermolecular forces than HCl
(b) two points
AsF3 has a trigonal pyramid shape and bond dipoles do NOT cancel (or asymmetric molecule)
AsF5 has a trigonal bipyramid shape and bond dipoles cancel (or symmetric shape)
Notes: explanation must refer to shape in order to earn point; one point earned if only correct Lewis structures are given.
(c) two points
NO2¯ has resonance structures
HNO2 has no resonance structures
OR
one N-O single bond, one N=O double bond
Note: one point earned if only correct Lewis structures, including resonance for NO2¯ given.
(d) two points
Sulfur uses d orbitals (or expanded octet), oxygen has no d orbitals in its valence shell
OR
Sulfur is a larger atom, can accomodate more bonds.
Copyright © 1996 by College Entrance Examination Board and
Educational Testing Service. All rights reserved.